Problem 1.

a) ΣF_x on $AEBF$

We need to know γ_1 and γ_2.

For γ_1, use buoyancy on the floating cube:

$$\gamma_{\text{f1}} \cdot V_{\text{body}} = W_{\text{body}}$$

$$\gamma_{\text{f1}} = \frac{W_{\text{body}}}{V_{\text{body}}}$$

$W_{\text{body}} = F_B$

$$A \cdot L_b \cdot \gamma_{\text{f1}} = A \left(\frac{H_1 + H_2}{2} \right) \gamma_1$$

$$\gamma_1 = \frac{5}{4} \gamma_{\text{f1}}$$

$$= \frac{5}{4} \left(8 \text{ kN/m}^3 \right)$$

$$\gamma_1 = 10 \text{ kN/m}^3$$

For γ_2, use the manometer on the right side.

$$\gamma_1 (h_1 + h_2) - \gamma_2 (h_3 + h_5) - \gamma_{\text{h2}} h_5 = 0$$

$$\gamma_2 = \frac{\gamma_1 (h_1 + h_2) + \gamma_{\text{h2}} h_5}{h_3 + h_5}$$

$$= \frac{(14 \text{ kN/m}^3)(3-2) \text{ m} + (130 \text{ kN/m}^3)(0.2 \text{ m})}{4 \text{ m}}$$

$$= 26 \text{ kN/m}^3$$

$$\gamma_2 = 10 \text{ kN/m}^3$$

$$\gamma_1 = \gamma_2$$

Control volume for ΣF_x:

$$\Sigma F_x = F_{x1} - F_{x2}$$

$$\Sigma F_x = 0$$

b) Vertical hydrostatic force on ABC

Force on face AB Force on face BC

$$F_{ABC} = \gamma_1 \left(\frac{2 \text{ m} \times 1 \text{ m}}{2} \right) \left(10 \text{ m} \right)$$

$$= (10 \text{ kN/m}^3) (10 \text{ m}^3)$$

$$F_{ABC} = 100 \text{ kN}$$, applied at the centroid of the volume of fluid V_{ABC}

c) Vertical hydrostatic force on DEF

Some magnitude as F_{ABC} but in opposite direction!

Force on face EF Force on face DE

$$F_{DEF} = 100 \text{ kN}$$
d) \(h_5 \) (with \(D = 0.2 \text{ cm} \)) = \(h_5 \) (with \(D > 2 \text{ cm} \))

Surface tension acts on both sides of the manometer!

\[h_{5, \text{new}} = h_{5, \text{old}} = 0.20 \text{ m} \]

Surface tension cancels!

e) If the cube is fully submerged, it displaces a larger volume \(\Rightarrow \) \(H \) on the left side increases

The pressure on surface AB increases, and the pressure on surface BC increases, the resultant vertical hydrostatic force acting on ABC stays the same!
Problem 2.

Concepts involved:
- Linear momentum
- Shear stress.

\[F_{\mu} = \frac{\partial \dot{V}}{\partial \nu} \]

What is \(V_{out} \)?
We need absolute velocity.
Let \(U \) be \(\frac{Q}{A_{jet}} \)

\[\Rightarrow V_{out} = -U + V_s \]

\[-F_{\mu} = g \frac{Q}{A_{jet}} (-U + V_s) \]

\[F_{\mu} = g \frac{Q}{A_{jet}} (U - V_s) \ldots (1) \]

b) Shear stress on the layer of fluid:

\[F_{\mu} = \frac{2\zeta A}{\delta} \]

and \(\zeta = \frac{\mu \Delta V}{\delta} = \frac{\mu V_s - 0}{\delta} = \frac{\mu V_s}{\delta} \)

\[F_{\mu} = \frac{\mu V_s A}{\delta} \ldots (2) \]

Let \((1) = (2) \)

\[g \frac{Q}{A_{jet}} (U - V_s) = \frac{\mu V_s A}{\delta} \]

and solve for \(V_s \):

\[-V_s = \frac{\mu V_s A}{gQ\delta} - \frac{Q}{A_{jet}} \]

\[V_s \left(1 + \frac{\mu A}{gQ\delta} \right) = \frac{Q}{A_{jet}} \]

\[V_s = \frac{Q}{A_{jet}} \left(1 + \frac{\mu A}{gQ\delta} \right)^{-1} \ldots (3) \]