Spatial Enhancement

Region operations: \(k'(x, y) = F(k(x-m, y-n), \ldots k(x,y), \ldots k(x+m,y+n)) \)

Template (Windowing) Operations

Template (window, box, kernel)
- defines the immediate area of interest
- used in spatial domain operations
- usually square/rectangular

Examples of Template Operations
- correlation, convolution
 - spatial smoothing
 - spatial differentiation
 - edge enhancements
- median filter
- variance/ std. deviation
- local area enhancements
- difference operations
- template matching
- logical averaging

Fourier Transform
- Image \(\mapsto \) spatial frequency map (FT)
- frequency domain filtering
- filtered FT map \(\mapsto \) image

Correlation
The correlation of two continuous functions \(f(x) \) and \(g(x) \), denoted by \(f(x) \circ g(x) \), is defined (in 1-dimension) by the relation:

\[
f(x) \circ g(x) = \int_{-\infty}^{+\infty} f(\alpha)g(x + \alpha)d\alpha
\]

Where \(\alpha \) is a dummy variable of integration.

Convolution
The convolution of two continuous functions \(f(x) \) and \(g(x) \), denoted by \(f(x) * g(x) \), is defined (in 1-dimension) by the relation:

\[
f(x) * g(x) = \int_{-\infty}^{+\infty} f(\alpha)g(x - \alpha)d\alpha
\]

Where \(\alpha \) is a dummy variable of integration.
Correlation: graphic description

STEP 1:

Convolution: graphic description

STEP 2:
Convolution & correlation filters

1. **Sum of the filter elements:**
 \[\sum f(k) = 1 \implies \text{tonal character of the original image is unchanged.} \]
 \[\sum f(k) > 1 \implies \text{tonal (contrast) stretch} \]
 \[0 < \sum f(k) < 1 \implies \text{tonal (contrast) reduction} \]
 \[\sum f(k) = 0 \implies \text{complete loss of tonal properties.} \]

2. **Laws:** Let \(f_1 \) and \(f_2 \) be filters, and let \(F \) be an image:

 Distributive Law: (addition)
 \[
 (f_1 * F) + (f_2 * F) = (f_1 + f_2) * F
 \]
 \[
 (f_1 \circ F) + (f_2 \circ F) = (f_1 + f_2) \circ F
 \]

 Commutative Law: (addition)
 \[
 (f_1 + f_2) * F = (f_2 + f_1) * F
 \]
 \[
 (f_1 + f_2) \circ F = (f_2 + f_1) \circ F
 \]

 Associative Law: (convolution)
 \[
 f_1 * (f_2 * F) = (f_1 * f_2) * F
 \]

 Commutative Law: (convolution)
 \[
 f_1 * f_2 = (f_2 * f_1)
 \]

Convolution: discrete definition
The discrete definition of the convolution of a filter \(f(x) \) with image \(g(x) \), is defined as:

\[
(f(i, j) * g(i, j)) = \sum_{k=-(m-1)/2}^{(m-1)/2} \sum_{\ell=-(n-1)/2}^{(n-1)/2} f(k, \ell) g(i-k, j-\ell)
\]

Where:
- \((i,j) \) = location in the image
- \((m,n) \) = size of the filter template
- \((k,\ell) \) = location within the filter template
- \((k,\ell) = (0,0) \) refers to the filter center

- Filters are usually defined with odd dimensions, i.e., 3x3, 5x5, \ldots
- That way the **center** pixel is always well defined.
- The center (or reference) pixel in a filter with even dimensions is often taken to be the upper left pixel of the center group.

Spatial Smoothing:

- **low-pass (averaging or mean) filter** - convolution/correlation operation
 - replaces the image value with a weighted average of the local values

Linear Stretch: Convolution/correlation operation using a template with an effective size of 1x1.
- Each image pixel gray value is multiplied by the value of the template.
Median Filter:
- Replaces the image value with the local median
- More generally, a rank-order filter. The filter is applied by sorting the values of in the neighborhood defined by the template, selecting the median value and assigning this value to the pixel.
- For example, in a 3x3 neighborhood, the median is the 5th largest value, in a 5x5 neighborhood the 13th largest value, and so on.

Logical averaging
Local area enhancement (statistical differencing)
- gray-value mapping varies over the image.
- produces same contrast over the entire image.
- let \(k_m(i,j) \) and \(\sigma(i,j) \) and be the mean and standard deviation of gray values in some neighborhood of (i,j).

\[
k_o(i, j) = k_m(i, j) + [k(i, j) - k_m] \frac{\sigma_o}{\sigma(i, j)} \text{ where: } k_o = \text{output gray value}
\]

\[
\sigma = \text{desired standard deviation}
\]

\[
k_m = \text{local mean}
\]

Local area enhancement (forcing a local mean)
- allows more user control over the enhancement

\[
k_o(i, j) = \alpha m_o + (1 - \alpha)[k(i, j) - k_m] \frac{\beta \sigma_o}{\sigma_o + \beta \sigma(i, j)}
\]

\[
\text{where: } k_m(i,j) = \text{local mean}
\]

\[
\sigma(i,j) = \text{local standard deviation}
\]

\[
k_o = \text{output gray value}
\]

\[
m_o = \text{desired mean}
\]

Edge enhancements: 1-D Gradient
- In 1-dimension:

Continuous function:
\[
\nabla_x f = \frac{df}{dx}; \quad \nabla_y f = \frac{df}{dy}
\]

Discrete function:
\[
\nabla_x f = f(i) - f(i-1), \quad \nabla_y f = f(j) - f(j-1)
\]

Edge enhancements: 2-D Gradient
- In 2-dimension:

Continuous function:
\[
\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j}
\]

Discrete function:
\[
\nabla f(i, j) = [f(i, j) - f(i-1, j)] \hat{i} + [f(i, j) - f(i, j-1)] \hat{j}
\]

The Gradient is a vector quantity
Edge enhancements: Gradient – alternates

The gradient is a vector quantity, i.e., it has a magnitude and a direction.

Magnitude: $|\nabla f| = \sqrt{(\nabla_x f)^2 + (\nabla_y f)^2}$

Absolute Value: $|\nabla_x f| + |\nabla_y f|

Robert's gradient:

$[f(i,j) - f(i+1,j+1)]^2 + [f(i+1,j) - f(i,j+1)]^2$

Sum of the directional derivatives: $\nabla_x f + \nabla_y f$

| -1 1 0 | 0 -1 0 |
| 0 0 0 | 0 1 0 |

| 0 -1 0 | = | -1 2 0 |
| 0 0 0 | 0 0 0 |

Edge Enhancement: Laplacian

Continuous function: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

Discrete function:

$\frac{\partial^2 f}{\partial x^2} = f(i-1,j) - 2f(i,j) + f(i+1,j)$

$\frac{\partial^2 f}{\partial y^2} = f(i,j-1) - 2f(i,j) + f(i,j+1)$

Discrete 2D Laplacian: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1) + 4f(i,j)$

0 0 0	0 1 0	0 0 0
1 -2 1	0 -2 0	1 -4 1
0 0 0	0 1 0	0 0 0
Convolution filter characteristics:

- **Sum of the filter elements:**

 \[\sum f(k) = 1 \implies \text{tonal character of the original image is unchanged.} \]

 \[\sum f(k) > 1 \implies \text{tonal (contrast) stretch} \]

 \[0 < \sum f(k) < 1 \implies \text{tonal (contrast) reduction} \]

 \[\sum f(k) = 0 \implies \text{complete loss of tonal properties.} \]

- **Directionality/symmetry**

![Diagram showing the convolution filter characteristics with various sum and directionality/symmetry results.](image-url)