\[P \cdot V = n \cdot R \cdot T \]

\[P = \gamma h \]
\(\gamma \) is specific weight of water

\(V_{\text{tube}} = \text{volume of tube} \)

Find moles of air in tube at two different pressures. Difference must be supplied by pumping in air at atmospheric pressure.

Solve ideal gas law for \(n \) and substitute the equation for hydrostatic pressure to obtain the air pressure in the tube given submergence \(h \).

\[
n_1 = \left(\gamma h_1 + P_{\text{atm}} \right) \frac{V_{\text{tube}}}{R \cdot T}
\]

\[
n_2 = \left(\gamma h_2 + P_{\text{atm}} \right) \frac{V_{\text{tube}}}{R \cdot T}
\]

\[
n_2 - n_1 = \left(h_2 - h_1 \right) \frac{\gamma V_{\text{tube}}}{R \cdot T}
\]

The volume of air that must be supplied is

\[
V_{\text{pumped}} = \left(n_2 - n_1 \right) \frac{R}{P_{\text{atm}}} \frac{T}{P_{\text{atm}}}
\]

\[
V_{\text{pumped}} = \left(h_2 - h_1 \right) \frac{\gamma V_{\text{tube}}}{P_{\text{atm}}}
\]
Find pivot location h_{hinge}

First find location where pressure in the fluid is the same as atmospheric pressure. h is distance above gage where pressure is atmospheric.

$$P_{\text{gage}} = \gamma h$$

$kPa := 1000Pa$ \hspace{1cm} $P = 1 \text{kPa}$

$$\gamma := 0.89806 \frac{N}{m^3}$$

$$h := \frac{P_{\text{gage}}}{\gamma}$$

$$h = 0.127 \text{m}$$

$$a := \frac{c}{\cos(\theta)}$$

$$a = 1.155 \text{m}$$

$$a$$ is height of gate along slant

$$b := 2 \text{m}$$

b is width of gate

$$I_{xc} := \frac{b \cdot a^3}{12}$$

$$I_{xc} = 0.257 \text{m}^4$$

$$A_{\text{gate}} := a \cdot b$$

$$A_{\text{gate}} = 2.309 \text{m}^2$$

$$y_c := \frac{h + \frac{c}{2}}{\cos(\theta)}$$

$$y_c = 0.725 \text{m}$$

$$y_R = \frac{I_{xc}}{y_c \cdot A_{\text{gate}}} + y_c$$

$$y_R := \left[\frac{b \cdot a \cdot \cos(\theta)}{12 \left(h + \frac{c}{2} \right) a \cdot b} + \frac{h + \frac{c}{2}}{\cos(\theta)} \right]$$

$$y_R = 0.878 \text{m}$$

$$h_{\text{hinge}} := h + c - y_R \cdot \cos(\theta)$$

$$h_{\text{hinge}} = 0.367 \text{m}$$
Find the flow rate \(Q \) from the opening in the tank.

Use Bernoulli’s equation. Place one point on the air-water interface inside the tank and the other point at the center of the port. Define the coordinate system with \(z=0 \) at the center of the port. Use atmospheric pressure as the pressure datum.

\[
\frac{P_1}{\gamma} + z_1 + \frac{V_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{V_2^2}{2g}
\]

\[
\frac{P_1}{\gamma} + z_1 = \frac{V_2^2}{2g}
\]

\[
V_2 := \left(\frac{2gP_1}{\gamma} + 2g z_1 \right)^{0.5}
\]

\[
V_2 = 8.355 \frac{m}{s}
\]

\[
Q := V_2 \frac{\pi d^2}{4}
\]

\[
Q = 2.625 \times 10^{-3} \frac{m^3}{s}
\]

\[
Q = 2.625 \frac{L}{s}
\]